MOD-SIX_7971 GEN-II V9 Clock PCB assembly notes.
Version 2.6 January-2018, HCO.
Copyright Henry Carl Ott. All rights reserved.
Revision list.
2.6 Minor typos fixed.
2.5 Update CPU to rev 7.6. Update PSU to 7.6. Update RPTR reference. Misc fixes.
2.4 Updated RPTR references.
2.3 Remove MEZZ and RPTR 2.0 references.
2.2 Updates for Gen-II-V7 added. Various typos corrected and clarifications added.
2.1 Added RF-LINK Mezzanine board assembly notes.
2.0 Initial release

This document incorporates feedback from individuals who have assembled kit versions of the first and second generations of the MOD-SIX. Their input is very much appreciated, and you can benefit greatly from their contributed experiences.

Please pay special attention to all BOLD RED notices. They are of particular importance.
WARNING: This clock utilizes hazardous High Voltages to power the Nixie tubes. This voltage is generated from an offline switching power supply, but proper caution should always be exercised when physically interacting with the clock's circuitry. A proper enclosure should also be used at all times to shield and protect the user and any innocent bystanders from the high voltages present within this clock.

These are supplemental notes on assembling the MOD-SIX_7971 clock kit PCB assemblies. It's assumed you are experienced and comfortable with assembling electronic circuitry and SMD components in particular. Please seek assistance if you are unsure of your soldering ability with fine pitch SMD or lack the proper tools.

Primarily you'll be working from the schematics and parts placement drawings, these notes are just additional hints and techniques to hopefully make the whole assembly process easier.

NOTE: If you wish to have the mill-max tube socket pins raised above the PCB it is VERY important to solder the pins in before any other components. Please see separate document that shows in detail how to install the Nixie socket pins and how to fabricate the copper towers for the colon dots and the am/pm indicator.

Some Terminology:

PSU - Power Supply Unit.
Converts 12 VDC input to intermediate 8 volts, also generates high voltage for the Nixie tubes and neon bulbs..

TDU - Tube Driver Unit.
Converts logic level signals from CPU to drive the nixie tubes and neon indicators.
CPU - Central Processing Unit.
Contains microprocessor and battery backed Real Time Clock functions.

RPTR - Standalone GPS repeater unit.
Receives time and location data from an integrated GPS receiver. Rebroadcasts the time data to all compatible receivers. Additionally, the RPTR broadcasts temperature, relative humidity, barometric pressure, and random words from a built in lexicon to populate the MOD-SIX clock's random word display feature. The MCU on the original MOD-SIX did not have enough memory to store all the words, so the lexicon was moved to the RPTR. User instructions for the RPTR are available in a separate document.

Some General Notes:

Discrete SMD parts are inexpensive, and we included some extras in case one goes flying. So don't worry if you have any leftover parts.

You can take advantage of the modular nature of the design to assist in assembling and debugging any problems encountered while constructing the MOD-SIX clock. It's best to assemble and test the PSU first, then the CPU before proceeding onto constructing the TDU boards. The CPU had test features to assist in debugging the TDUs.

After assembling the PSU and verifying proper voltages, you can then plug it directly into the CPU and test for proper voltages on the CPU board.

Please Disable the HV output for these preliminary tests by removing the HVEN strap.
You can then assemble a TDU board and test it in circuit before continuing onto the rest of the clock construction. Each additional completed TDU can be added one at a time, or tested individually.

PSU specific construction notes:

It's easiest to insert and solder the HV-PSU last.
D2-D3 LEDs. The cathode (K) indicator notch on the included LEDs should be towards the rear of the clock. Different color PLCC-2 LEDs can be substituted or you can choose not to install the LEDs entirely.

After assembling the PSU, apply 12 volts to DC input, and check for +8 volts at J 2 .
The Neon bulb should illuminate when the HV is present. Check for HV DC at J3. Voltage should be in the 180-190 volt range.

Removing the HVEN strap disables the HV module for testing purposes.
NOTE. Be sure the SMD capacitor at C4 is the high voltage part. It'll be the largest SMD capacitor.

NOTE. The Neon lamp NE1 is installed as an HV live indicator, but will only illuminate if the
high voltage level is above approximately 90volts.
NOTE. The manufacturer's label may be removed from the HV module for a cleaner finished look. The label residue can be removed with Isopropyl alcohol or "goo-gone". Some physical effort will be necessary to remove all the residue. You may wish to do this before part placement and soldering.

NOTE. Acetone based solvents will remove the paint from the HV module. Be careful if you use acetone to remove solder flux residue. If you wish, you can remove all the paint from the HV module easily with some acetone and either repaint a different color or leave the natural copper exposed for that steam punk look.

TDU specific notes:

NOTE: If you wish to have the mill-max pins raised above the PCB it is VERY important to solder the pins in before any other components.

Please see the separate document provided for detailed instructions on installing the mil-max nixie tube socket pins and the construction of the copper neon colon \& AM/PM towers. These can be tricky steps and the separate document will walk you through the process.

Also note that the pins are elevated off the PCB primarily for aesthetic reasons. There is the idea that the extended pins may have more spring and stress the tubes less, but it's just a theory. You could certainly mount the pins flush with the PCB, but then you may have to adjust the colon tower tube lengths to maintain alignment.

NOTE: U1 Pin 1 location. The HV5522 plastic package has some possibly confusing molding indents. Please take care in properly determining Pin 1 prior to soldering.

HV5522 Proper Pin 1 orientation.

TDU cathode resistors.

The "A B C D" designators on the TDU PCB silkscreen correspond to the 4 different cathode resistor values for the B7971 tubes. Different length cathodes within the nixie tube require different current limiting resistors so that the brightness of each segment will match properly. The letters themselves are just an assembly aid to speed up locating the SMD resistors on the PCB. This seemed less error prone than working with the individual resister values. The actual resistor values are on the schematic and in the BOM, but are provided here again:

$$
A=22 k \quad B=24 k \quad C=27 k \quad D=33 k
$$

CPU specific construction notes:

J1 - HV. High voltage is not used on the CPU board. A location is provided for a matching header to provide for a more symmetric build. Please take proper precautions around high voltages.

RF1-2.4ghz RF-MODULE. NOTE Solder the $2 x 4$ header to the CPU PCB, and then plug the RF module into the header when CPU construction is finished. The RF module is oriented with the gold PIFA squiggle antenna towards the front of the clock,

J4 - ISP. Used to reprogram / upgrade the firmware of the AVR ATMEGA168 MCU. An external compatible AVR programmer or a vendor provided FW upgrade "dongle" is required.

U3 - Voltage regulator. Be sure to properly solder the ground tab of the 78M05.
Q1- Photo-transistor. The long lead of the photo-transistor is the Emitter. It should be installed towards the front of the clock. NOTE that on the GIIV7 and later version clocks the ROHM photo-transistor has been replaced with a VISHAY TEPT4400 photo-transistor. R4 has been changed to 120 K to provide a better match to the sensitivity. The TEPT4400's lead detail requires it to be installed at a minimum height above the PCB.

D1- LED. The long lead of the included green LED is the Anode. It should be installed towards the rear of the clock. You may substitute a different color if desired. AESTHETIC NOTE You may wish to install the LED D1 after installing photo-transistor Q1 to align the heights of the two components.

MOD-SIX Diagnostic notes:

CPU

On Power up the green CPU led should light and then extinguish after a couple of seconds. If there are any problems with the RTC subsystem (the RTC chip is not present or the I2C bus is open/shorted) the CPU led will blink rapidly and the clock will not function.

NOTE If the rotary encoder is depressed and held while power is applied to the clock, a tube segment bit test pattern will be displayed on the Nixie tubes. It will run continuously until the power is cycled. You can use this to test, and help find possible soldering issues on the TDU
boards. There is an additional segment test function in the clock's main configuration menu than can be accessed when the clock is running normally..

TDU

The segment test feature on the CPU can be very helpful. Individual TDU boards may be tested with just the CPU and a PSU.

Attached Images and diagrams list:

1. PCB image scan. Top and bottom.
2. PSU 7.6 Component placement top.
3. PSU 7.6 Component placement bottom.
4. PSU 7.6 Schematic.
5. PSU 7.6 BOM
6. TDU 1.0 Component placement top.
7. TDU 1.0 Component placement bottom.
8. TDU 1.0 Schematic.
9. TDU 1.0 BOM
10. CPU 7.6 Component placement top.
11.CPU 7.6 Component placement bottom.
12.CPU 7.6 Schematic.
11. CPU 7.6 BOM

PSU PARTS PLACEMENT TOP

PSU PARTS PLACEMENT BOTTOM

MOD-SIX PSU 7.6 BOM								
Item \#	Qty	Ref.	VALUE	Part Name	Desription	Mfg.	Mfg. Part Number	Note
1	1	C1	470uf	CAP/RAD/3.5MM/8MM	CAP RAD $2.5 \mathrm{~mm} / 8 \mathrm{~mm}$	Generic		Bulk Decouple.
2	1	C2	100nf	CAP/SMD/1206	CAP SMD 1206	Generic		
3	1	C3	4.7uf	CAP/SMD/1206	CAP SMD 1206	Generic		
4	1	C4	100nf 600v	CAP/SMD/1812	CAP SMD 1812	Generic		
5	1	J1		CON/RA/PWR/COAX/PWR	COAXIAL POWER JACK 2.0MM	CUI STACK	PJ-102A	Tapered pins (not slots)
6	1	J4		SMD/2MM/2POS/JST/S2B-PH-SM4-TB	CONN HEADER PH 2POS 2MM SMD	JST	S2B-PH-SM4-TB	Do not place.
7	1	J5		SMD/2MM/4POS/JST/S4B-PH-SM4-TB	CONN HEADER PH 4POS 2MM SMD	JST	S4B-PH-SM4-TB	Do not place.
8	1	D1	40V 3A	DIODEISHOTISMCI30BQ040	Diode 3A 40V	Vishay	30BQ040	Reverse polarity protection
9	1	F1	1.5 AMP	FUSEIPOLYSMD 1812	PTC Resettable Fuse	Littlefuse		1.95 Trip
10	1	HVEN		HDR/100/1X2/STRAP/POL	1X2 .100 HEADER W/STRAP	Generic		
11	1	J3		HDR/2X2/RA/FEMALE	2X2 .100 RA FEMALE HEADER	Sullins	PPPC022LJBN-RC	
12	1	J2		HDR/2X4/RA/FEMALE	2X4.100 RA FEMALE HEADER	Sullins	PPPC042LJBN-RC	
13	2	D2-3		LED/SMD/OSRAM/T670	LED SMD PLCC-2	OSRAM		
14	1	U1		LM7808/DPAK	VOLTAGE REGULATOR	Fixed 8V		
15	1	NE1		NEON	Neon Bulb Small	Generic		
16	1	R1	205k	RESISMD11206	RES SMD 1206	Generic		
17	1	R2	2.43k	RESISMD1206	RES SMD 1206	Generic		
18	1	R3	1.5k	RESISMD11206	RES SMD 1206	Generic		
19	1	HVPS		S10-S180/HV	HV SMPS 180V 10watt	American Power Design	S10-S180	
20	1	PCB	V7.6		PCB-PSU		7.6	

TDU PARTS PLACEMENT TOP

TDU PARTS PLACEMENT BOTTOM

\＃
$\stackrel{y}{\bar{\omega}}$
$\stackrel{y}{ \pm}$

> NIXIE1-2 R1-2 R8 R

R15 R4－5 R19－20 R9 R12 R24 R13 R27－28 R30

$$
8 \text { R3 R29 R14 }
$$

VALUE Part Name

CAPISMD\1206
HDR\2X2\RAIFEMALE
HDR\2X2\RAIMALE
HDR\2X4\RAIFEMALE
HDR\2X4\RAIMALE

\＃
Z
Z

Mfg．part Number

PPPC022LJBN－RC 68021－204HLF PPPC042LJBN－RC 68021－208HLF HV5522PG－G | Burroughs B7971 | |
| :--- | :--- |
| Generic | Nominal 22k | Generic Nominal 24k Nominal 27 k Generic Nominal 33k 0

0
0
0
0

| Mfg． |
| :--- | :--- |
| Generic |
| Sullins | SMD Capacitor 1206

2X2 ． 100 RA FEMALE HEADER
2X2．100 RA MALE HEADER 2X4．100 RA MALE HEADER 32－Channel HV Shift Register Small Neon Bulb NE－2 6X15 てLX9 て－ヨN qing uoən IIems （әəә૫ әце әм Кчм）әqn \perp ә！x！N RES SMD 1206 RES SMD 1206 RES SMD 1206 RES SMD 1206 PCB－TDU
NEONIUPRIGHT\MINI NEONIUPRIGH
NIXIE\B7971
RESISMDI1206 RESISMD\1206 RESISMD\1206

 NA
 R18R3 R29 R14 R31－34

CPU PARTS PLACEMENT TOP

CPU PARTS PLACEMENT BOTTOM

MOD-SIX CPU 7.6 BOM								
Item \#	Qty	Ref.	VALUE	Part Name	Desription	Mfg.	Mfg. Part Number	Note
1	1	U3	5 v	78M05/SMD/DPAK	5 VOLT REG SMD DPAK	Generic		
2		U1	MCU	ATMEGA168/TQFP	Microcontroller	Atmel	ATmega 168-20AU	TQFP
3	1	BATT1	CR2032	BATT/COIN/20MM/RENATA/HU-2032-1	CR2032 BATTERY HOLDER	Renata	HU2032-LF	
4	4	C1-2 C16 C18	4.7uf	CAP/SMD/1206	CAP SMD 1206	Generic		
5	5	C5-7 C3-4	100nf	CAP/SMD/1206	CAP SMD 1206	Generic		
6	2	C14-15	33pf	CAP/SMD/1206	CAP SMD 1206	Generic		
7	1	J5		CON/RA/35/3-COND/CUI/SJ1-3534NG	3.5 MM TRS JACK	CUI STACK	SJ1-3534NG	
8		D2	10 v	DIODE/ZENER/MELF	DIODE ZENER SMD MELF	Generic		
9	1	U2	RTC	DS3232	RTC W/TCXO 20-SOIC	MAXIM	DS3232	
10	1	FB1		FB1206	FERRITE BEAD 1206	Generic		
11	1	Q2		FDV301N	Digital FET N-Channel	Fairchild	FDV301N	
12	1	J4		HDR/100/2X3	2×3.100 MALE HEADER	Generic		ISP
13	1	J3		HDR/100/2X5/SMD	HEADER SMD 1002×5	Generic		Do Not Place
14	1	J2		HDR/2X2/RA/MALE	2×2.100 RA MALE HEADER	FCI	68021-204HLF	
15	1	J1		HDR/2X4/RA/MALE	2×4.100 RA MALE HEADER	FCI	68021-208HLF	
16	1	D1	GREEN	LED/3MM	LIGHT EMITTING DIODE 3 mm	Generic		Longer Lead = Anode
17	1	U4		MCP1801NREG	3.3V LDO SOT23-5	Microchip	MCP1801T-3302//OT	May substitute TOKO part.
18	1	Q1		PHOTO-TRANSIROHMIRPT-311PTA49	Photo Transistor 3mm	ROHM	TEPT4400	Longer Lead = Emitter
19	5	R1-3 R6 R12	10k	RESISMDI1206	RES SMD 1206	Generic		
20	1	R4	120k	RESISMD11206	RES SMD 1206	Generic		
21	6	R7-11 R13	220	RESISMD1206	RES SMD 1206	Generic		
22	1	R5	680	RESISMDI1206	RES SMD 1206	Generic		
23	1	RF1		RF-2400P/RF_MODULE	NRF24L01P 2.4GHZ RF Module	Various	MOD-NRF24L01	Populate PCB with 2×4 header
24	1	ROT1		ROTENC/11M/HOR/TT/EN11-VSM1AF20	ROTARY ENCODER RA W/SWITCH	TT Electronics/BI	EN11-VSM1AF20	
25	1	Y1	14.7456MHZ	XTAL_HC-49US	Quartz Crystal HC49/US PKG	ABRACON	ABL-14.7456MHZ-B2	18pf
26	1	KNOB		NA	Knob for rotary encoder	KILO	OEDA-50-2-5	
27	1	PCB	V7.6	NA	PCB-CPU			

